Operational Amplifiers

Basics of Op Amps
Advantages of Op Amps

Compared with circuits built from separate components ICs are:

- Very much smaller – size limits the power and voltage
- Lighter
- Cheaper
- More reliable
The Op Amp

The main characteristics

I. Very high open-loop voltage gain
II. Very high input impedance
III. Very low output impedance
The Differential Amplifier

- Basically an op amp is a differential amplifier, i.e. it amplifiers the difference between the two inputs
 - If \(V_2 > V_1 \), \(V_o \) is positive
 - If \(V_2 < V_1 \), \(V_o \) is negative
 - If \(V_2 = V_1 \), \(V_o \) should be zero
Op Amps & Negative Feedback

- Op Amps use n.f.b., some of the output is fed back to the inverting (-) input, this reducing the output of the new amp.

- Effects of n.f.b on the Op Amp
 - Closed loop gain (A) is reduced
 - Wider range of input voltages possible
 - Greater stability, less distortion, increased bandwidth
Bandwidth

- 741 has a unity bandwidth of 1MHz
- Gain Bandwidth product is a constant for a particular Op Amp
- Estimate the gain for a bandwidth of 20kHz from the graph.
The Inverting Amplifier

- Use Kirchhoff’s current law and the Op Amp characteristics
 - very high input impedance
 - very high open-loop gain.
- Voltage Gain is given by:

\[A = \frac{V_o}{V_i} = -\frac{R_f}{R_i} \]
Inverting Amplifier Practical

- Design and Test an inverting amplifier with a gain of -5 and an input resistance of 2kΩ.
- What is the value of
 - Ri
 - Rf
 - Rb
- Measure the voltage gain at 1kHz
Inverting Amplifier Practical

- Modify the circuit to give an amplifier gain of -10 keeping the input resistance of $2k2$.
- Measure the voltage gain at $1k$Hz
Summing Amplifier

- Summing amplifiers add (sum) a number of inputs together.
- Uses the concept of the “virtual earth” and Kirchhoff’s current law to explain the summing point P.
Summing Amplifier

- Common uses include:

 i. Audio mixers, to combine a number of inputs (guitars, keyboards, microphones, etc)

 ii. Perform mathematical process of addition in analogue computing
The Non-inverting Amplifier

- Negative feedback obtained from potential divider formed by R_i and R_f
- Voltage Gain is given by:

$$A = \frac{V_o}{V_i} = 1 + \frac{R_f}{R_i}$$

- Gain only dependant on resistor values
Non-inverting Amplifier Practical

- Design and Test an inverting amplifier with a gain of 23 and an input resistance of 220k.
- What is the value of
 - Ri
 - Rf
- Measure the voltage gain at 1kHz
Voltage Follower

- All of the output is fed back to the inverting input.
- Unity voltage gain amplifier
- The output voltage follows the input (a voltage follower)
- Acts as a buffer amplifier
Circuit Simulation Activity

- You are to use the MultiSim application to capture the circuit designs for:
 1. The inverting amplifier with a gain of:
 a. -5
 b. -10
 2. The non-inverting amplifier with a gain of 23.

- For each circuit, you will need to print out:
 - the circuit diagram,
 - evidence of the gain achieved.
Additional Reading

For more information on Operational Amplifiers go to:
• www.wiki.computing.hct.ac.uk – the electronics unit 35 page
Simulation

Oscilloscope

Bode Plotter
Oscilloscope

Timebase

Vertical Scale
Bode Plotter – Frequency Response